354 research outputs found

    Probabilistic evaluation of similarity between pairs of three-dimensional protein structures utilizing temperature factors

    Get PDF
    A probabilistic measure of structural similarity is proposed which takes into account the degree of spatial localization of atoms expressed in atomic displacement parameters

    Detailed estimation of bioinformatics prediction reliability through the Fragmented Prediction Performance Plots

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An important and yet rather neglected question related to bioinformatics predictions is the estimation of the amount of data that is needed to allow reliable predictions. Bioinformatics predictions are usually validated through a series of figures of merit, like for example sensitivity and precision, and little attention is paid to the fact that their performance may depend on the amount of data used to make the predictions themselves.</p> <p>Results</p> <p>Here I describe a tool, named Fragmented Prediction Performance Plot (FPPP), which monitors the relationship between the prediction reliability and the amount of information underling the prediction themselves. Three examples of FPPPs are presented to illustrate their principal features. In one example, the reliability becomes independent, over a certain threshold, of the amount of data used to predict protein features and the intrinsic reliability of the predictor can be estimated. In the other two cases, on the contrary, the reliability strongly depends on the amount of data used to make the predictions and, thus, the intrinsic reliability of the two predictors cannot be determined. Only in the first example it is thus possible to fully quantify the prediction performance.</p> <p>Conclusion</p> <p>It is thus highly advisable to use FPPPs to determine the performance of any new bioinformatics prediction protocol, in order to fully quantify its prediction power and to allow comparisons between two or more predictors based on different types of data.</p

    Packing topology in crystals of proteins and small molecules : a comparison

    Get PDF
    We compared the topologies of protein and small molecule crystals, which have many common features - both are molecular crystals with intermolecular interactions much weaker than intramolecular interactions. They also have different features - a considerably large fraction of the volume of protein crystals is occupied by liquid water while no room is available to other molecules in small molecule crystals. We analyzed the overall and local topology and performed multilevel topological analyses (with the software package ToposPro) of carefully selected high quality sets of protein and small molecule crystal structures. Given the suboptimal packing of protein crystals, which is due the special shape and size of proteins, it would be reasonable to expect that the topology of protein crystals is different from the topology of small molecule crystals. Surprisingly, we discovered that these two types of crystalline compounds have strikingly similar topologies. This might suggest that molecular crystal formations share symmetry rules independent of molecular dimension

    Chest pain and a left parasternal soft tissue swelling in an immunocompetent refugee with disseminated tuberculosis

    Get PDF
    An immunocompetent migrant with chest pain was admitted to an Italian hospital. CT scan showed a left pectoral abscess and osteomyelitis of the sternum. The infection spread into the anterior mediastinum near to the pericardium and the heart, where an atrial mass was confirmed by echocardiography. Disseminated tuberculosis was diagnosed

    FRASS: the web-server for RNA structural comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The impressive increase of novel RNA structures, during the past few years, demands automated methods for structure comparison. While many algorithms handle only small motifs, few techniques, developed in recent years, (ARTS, DIAL, SARA, SARSA, and LaJolla) are available for the structural comparison of large and intact RNA molecules.</p> <p>Results</p> <p>The FRASS web-server represents a RNA chain with its Gauss integrals and allows one to compare structures of RNA chains and to find similar entries in a database derived from the Protein Data Bank. We observed that FRASS scores correlate well with the ARTS and LaJolla similarity scores. Moreover, the-web server can also reproduce satisfactorily the DARTS classification of RNA 3D structures and the classification of the SCOR functions that was obtained by the SARA method.</p> <p>Conclusions</p> <p>The FRASS web-server can be easily used to detect relationships among RNA molecules and to scan efficiently the rapidly enlarging structural databases.</p

    Progressive dry-core-wet-rim hydration trend in a nested-ring topology of protein binding interfaces

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Water is an integral part of protein complexes. It shapes protein binding sites by filling cavities and it bridges local contacts by hydrogen bonds. However, water molecules are usually not included in protein interface models in the past, and few distribution profiles of water molecules in protein binding interfaces are known.</p> <p>Results</p> <p>In this work, we use a tripartite protein-water-protein interface model and a nested-ring atom re-organization method to detect hydration trends and patterns from an interface data set which involves immobilized interfacial water molecules. This data set consists of 206 obligate interfaces, 160 non-obligate interfaces, and 522 crystal packing contacts. The two types of biological interfaces are found to be drier than the crystal packing interfaces in our data, agreeable to a hydration pattern reported earlier although the previous definition of immobilized water is pure distance-based. The biological interfaces in our data set are also found to be subject to stronger water exclusion in their formation. To study the overall hydration trend in protein binding interfaces, atoms at the same burial level in each tripartite protein-water-protein interface are organized into a ring. The rings of an interface are then ordered with the core atoms placed at the middle of the structure to form a nested-ring topology. We find that water molecules on the rings of an interface are generally configured in a dry-core-wet-rim pattern with a progressive level-wise solvation towards to the rim of the interface. This solvation trend becomes even sharper when counterexamples are separated.</p> <p>Conclusions</p> <p>Immobilized water molecules are regularly organized in protein binding interfaces and they should be carefully considered in the studies of protein hydration mechanisms.</p
    corecore